
Journal of Mathcmatical Chemistry 2(1988)227 -239 227 

NEW METHOD FOR CONFLUENT SINGULARITY ANALYSIS 
OF POWER SERIES 

Gustavo A. ARTECA* 

D«partment of  Chemistry, UniversiO~ of" Saskatchewan, Saskatoon, Saskatchewan, 
Canada S7N OWO 

Francisco M. FERNÄNDEZ and Eduardo A. CASTRO 

Instituto de Investigaciones fTsicoquilnicas Teóricas y Aplicadas (hVIFTA ), 
Divisi(Jn Qui)nica Teórica, Casilla de Correo 16, Sucursal 4, 1900 La Plata, 
Argentina 

Received 25 June 1987 
(in final form 4 December 1987) 

Abstract 

A new method for calculating critical parameters from power series expansions, 
recently developed by the authors, is modified to take into account confluent 
singularities. The new procedure allows one to obtain wholly unbiased approaches 
to all physically meaningflH critical parameters. The high-temperature, zero-field 
magnetic susceptibility series for the spin-1/2 Ising model for the face-centered 
cubic lattice is discussed as an illustrative example. Present results compare favor- 
ably with previously reported ones and agree closely with those from renormaliza- 
tion group theory. 

1. Introduction 

The high-temperature senes (HTS) for the magnetic susceptibility o f  a 
spin crystal proves to be very useful in studying critical phenomena  in magnetic 

models [1 ,2 ] .  Phase transitions in such models take place as singularities in the thermo- 

dynamic t\mctions. The determination of  the set of  parameters (critical parameters)  

characterizing such singularities is one of  the main problems in the theory of  critical 

phenomena (see the discussion, for instance, in ref. [3] ). 
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Close to the critical temperature Tc, the reduced zero-field susceptibility Xo 
behaves approximately as (standard notation is used throughout this paper) 

Xo = ~ ( T ) { T -  T~) -~' , (1) 

where 3' ~> 0 is the critical exponent and a(T) is a slow-varying function of the 
absolute temperature. Great effort has been devoted to obtaining the critical para- 
meters 7 and T c and the form of a(T) flora the HTS [1,2].  Most studies have been 
perfomled on close-packed lattices. This is because these models are free from anti- 
ferromagnetic singular points, which make it difficult to handle the HTS [1,2]. In 
particular, the close-packed face-centred cubic (fcc) array is a favorite example 
because it is known to provide the best converged series for the thermodynamic 
functions [4]. Accordingly, we will restrict out discussion to the fcc spin-1/2 Ising 
model. 

When the asymptotic form for X0 is supposed to be strictly as in eq. (1), it 
is found that 7HTS ~ 1.250 .+ 0.002, for the fcc spin-1/2 Ising model [1,5,6].  

The critical exponent 3' = 5/4 was believed to occur in all three-dimensional 
lattices. As a result, great controversy arose from the fact that an alternative 
theory, known as renonnalization group theory (RGT) [ 7 - 1 0 ] ,  predicted 
7ROT ~ 1-240-+0-001 [7,8] or 7aC;T ~ 1.241-+0.004 [9] for the same model. 
The RGT depends on the validity of speculative, yet reasonable, suppositions con- 
cerning the physics near the critical temperature. This theory predicts several scaling 
relationships among critical exponents, which are generally believed to be valid [10]. 
An extensive comparative study of this method and the procedure based on power 
series expansions has been carried out in order to test the RGT conclusions. 

The disagreement between the results mentioned above is not due to numerical 
reasons, and it constitutes one of the most interesting problems in phase transition 
theory. The cause of the difference between the HTS and RGT values has been argued 
to be the disregard of some correction-to-scaling temls in eq. (1) [2,11,12].  The 
purpose of this work is to develop a method for computing critical parameters, taking 
into account the occurrence of these interfering terms. 

A number of ways have been tried in order to trace such correction tenns that 
are due to confluent singularities [ 1 3 - 1 9 ]  (i.e. a ( T )  is singular at T = T c ). Numerical 
investigation using Padé approximants [17], change of variables through different 
conformal mappings [18,19],  and variants of  the ratio method [ 1 3 - 1 6 ]  suggest 
that the difference between 3'HTS and "/RAT can be removed, and that the relation- 
ships predicted by the RGT are not violated. To obtain accurate enough results from 
the HTS, a fairly large number of expansion coefficients have been calculated for the 
fcc spin models [20,21],  since they provide good test cases for the new techniques. 

The atm of the present article is to propose an alternative method for obtain- 
ing critical parameters from HTS. To make clear its advantages, let us first discuss 
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the drawbacks of the most widely used methods. For instance, Nickel [15] has pointed 
out that "below some critical number of series terms, Dlog Padé approximants do not 
have the resolution necessary to distinguish the presence of confluent correction 
tenns, and will yield artificialty stable but wrong estimates". The critical number of 
tenns for the fcc spin-1/2 Ising model appears to be N = 12, and for this reason 
only the last three HTS terms, namely N = 13, 14, and t5 [20],  are taken into 
account to estimate the critical parameters. Through appropriate extrapolation, 
Nickel [17] obtained 3' = 1.2346 and, after rather subjective reasoning, concluded 
that 7 ~ 1.238 _+0.003. 

Procedures based on the ratio method [ 1 4 - 1 6 ]  lead to more reliable con- 
clusions. Zinn-Justin [14] obtained ? ~ 1.245 +- 0.003 for the same spin model. As 
shown by McKenzie [16], the best converged ratio method sequences are obtained 
when the RGT exponents are used. 

In summary, although the above-mentioned techniques enable one to distinguish 
the presence of corrections to scaling in spin-1/2 Ising models, they do not lead to 
accurate enough wholly independent estimates of the critical parameters. 

We have recently developed a method for calculating critical parameters from 
power series expansions and applied it to some examples in statistical mechanics [22] 
and quantum theory [23]. This procedure is straightforward and enables simultaneous 
calculation of all the critical parameters. In addition to this, it is quite general and cml 
be adapted to different problems. Close- and loose-packed-lattice spin-1/2 lsing 
models were discussed in ref. [22]. However, since the confluent singularities in the 
former case were not taken into account, the critical exponent for the fcc array was 
found to be "y ~ 1.2467 -+ 0.0005. It will be shown below that a modified version of 
out method leads to critical parameters in close agreementwith the RGT ones, provided 
the correction-to-sc~ding terms are properly considered. The procedure is developed in 
sect. 2 and tested in sect. 3 on some simple mathematical functions showing confluent 
singularities as the closest ones to the origin. The method-~s applied to the HTS for the 
magnetic susceptibüity of the fcc spin-1/2 Ising model in sect. 4. Conclusions are 
presented in sect. 5. 

2. T h e  m e t h o d  

Let F ( x )  be a real function of  the real variable x, so that it is representable as 

F ( x )  : A ( 1 - X / X o )  -~ + B ( 1 - X / X o )  -~~ + . . . .  y >~ O, (2) 

in a small neighborhood of x0, the closest singularity to the origin. If 7 ~> w, the 
second tenn in eq. (2) corresponds to the subdominant singular point. The real para- 
meters A and Ba re  called critical amplitudes and 7 and ware  the critical exponents. 
The Taylorseries/;o + F~x + . . .  + Fn xn  + . . .  for F ( x )  converges tor all lxl < Ixol. 
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Other singular terms that may appear in eq. (2) are supposed to contribute to a 
smaller degree than those above. In what follows, it is supposed that all higher-order 
terms of  F ( x )  in (2) have exponents differing from -3 '  by a positive integer. It 
should be noticed that if  F ( x ) = g ( x ) ( 1 - X / X o )  -'r, then the function g ( x ) m u s t  
not be amdytic in x = x o in order to have confluent singularities. If  g(x)  is analytic 
in x = x o, then the asymptotic behavior of  F ( x )  in the neighborhood of  x o will be 
of  the form (2), with w = 0 and B = 0. 

The t\mction 

L(x)  = ( 1  - x/uP" {F(x) - B ' ( 1  - x/u) -w'} , (3) 

where u, w' ,  3", and B '  are real adjustable parameters, can be expanded in Taylor 

series about the origin with coefficients L n given by 

n 

Ln = Z ( - u ) S - n  C(7', n - s ){ /~s-  B ' ( - u ) S C ( - w  ',s)} , (4) 

S = 0  

where C(a, b) = a(a - 1)(a - 2) . . . (a - b + 1)/b! are the combinatorial coefficients. 
Because of  the analytic properties of  the function F ( x ) ,  if u, 3,', ~ / ,  and B'  

were equal to x 0 , 7, w, and B, respectively, then L (x) would be analytic in a circle C R 
centered about the origin whose radius R would be greater than x 0. In this case, L (x) 
can be expanded as an infinite series of  powers of  x (with coefficents given by (4)) 
which converges for I xl < R > [x 0l. A necessary condition tohave such aconvergent 
expansion is: 

lim fl x "n = 0, [ x l < R ,  (5) 
n - ~  o o  

and in particular, as the series converges for x = x o, we know from the D'Alembert 
ratio t e s t  

x 0 lim ] L n + l / L n l <  1. (6) 
ùv/ ~ o o  

Under the conditions already mentioned, eqs. (5) and (6) are exact and both satisfied 
simultaneously. 

Up to now, of  course, the critical parameters are unknown, ttowever, they 
can be calculated approximately taking into account the requisites that the Taylor 
expansion of  L ( x )  must fulfill to be a convergent one, as discussed above. Let us 
consider the sequence 

N 

L ( N , x )  = ~ Lnxn;  (7) 
n = O  
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when the adjustable parameters u, "7', w' ,  and B' approach Xo, % w, and B, 
respectively, then conditions (15) and (6) imply 

IL(N, x o ) - L ( N + I , x o ) I  < e, forall N > N * .  (8) 

The smaller e and N* are, the better the convergence. This fact suggests that a set of 
optimum adjustable parameters could be obtained by determining them so that the 
best convergence condition is reached in eq. (8). It is reasonable to expect that such 
a condition would be found if the coefficients ILnl were as small as possible for 
growing n; in particular, the set of four equations L N = LN_ ~ = L N_ 2 = LN-• = 0 
appears to provide a sensible criterion to determine the optimum approximation to 
the critical parameters. Since this can be done for each N > 3, we obtain sequences 
u x ,  Z~v,, »@, and BN, which are expected to converge towards Xo, 7, w, and B, 

I 
respectively, as N tends to infinity. In addition, if A,« = L(N,  t(v) were found to be 
convergent, its limit would have to be A. 

The proposed set of equations can be considered as an extension of the 
necessary condition (5) for finite n, in order to provide the most rapidly convergent 
sequences. 

Together with this calculation scheine, we will carry out another, coinputa- 
tionally simpler one. If one of the equations of the above-mentioned set, say 
L~ _ 3 = 0, is removed, then three of the four adjustable parameters can be expressed 
as functions of the remaining one. It is found that B£r depends strongly on w' and 
exhibits a stationary point ((B~~)s). Therefore, it seems sensible to choose wj(~. to be 
such a stationary point. This criterion is particularly useful when N is small, because 
in that case it is possible that roots for the system of four equations cannot be found. 
In addition, we will also try beforehand fixed w' values to reveal the effect of the 
correction-to-scaling terms. 

It can easily be verified that if A and B in eq. (2) are polynomials of degree m, 
then our procedure will yield the exact critical parameters for all N ~> m when making 
the last four coefficients Q« equal to zero [22,23].  We are unable to prove analytically 
whether the above criteria always lead to convergent sequences, but it will be tested 
numerically on a series of simple mathematical functions and a model of physical 
interest. To estimate the sequence limits, we use 1/N extrapolations or the Wynn- 
Shanks algorithm [24]. 

3. A p p l i c a t i o n  to  s o m e  s imple  tes t  f u n c t i o n s  

Let us consider some simple, but nomtrivial, test functions having an asymp- 
totic behavior, near the singularity closest to the origin, similar to eq. (2). The examples 
chosen are noi»tlivial in the sense that the coefficients L x are not identically zero for 

some N > N*, N* > 1. 
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The examples chosen here to apply our method  are some hypergeometric  
functions (and functions related to them). The Taylor  expansion for these functions, 

z F l (a ,b  c :x)  = Z F . x  n Ixl < 1 (9) 
Utl  ~ 

t l = 0  

can easily be determined from the recurrence [25] 

f~~+ 1 = t~n(a + n)(b + n) / (n  + 1)(c + n), n : 0, 1, 2 . . . . .  

where F o = 1. Consequently,  they represent an appropriate example to accomplish 

a careful analysis of  convergence o f  the sequences corresponding to all critical para- 

meters. The hypergeometric  functions satisfy the foltowing proper ty  [25] : 

2F1(a,b;c:x)= { F ( c ) r ( c - a - b ) / F ( c - a ) F ( c - b )  2Fl(a,b;a + b - c  + 1 ; l - x )  

+ (1 - x )  « - a - b  t r ( c )  P (a  + b - c ) / I ' ( a )  P ( b ) }  

× 2 F l ( c - a , c - b : c - a - b + l ; 1 - x ) .  ( l o )  

From eq. (10), we can expect  a dominant  singularity at x = 1, with 7 = a + b - c for 
the critical exponent  if  the constants a, ó, and c take values so that all the arguments 

of  the above gamma functions are not  negative integers (cf. eq. (2)). in that case, 
eq. (10) shows that the critical behavior for these timctions follows eq. (2), with 

critical amplitudes 

it = I~(c) l~(c - a - b ) / p ( c  - a)  P ( c  - b) ,  

B = r ( c )  P (a  + b - c ) / P ( a )  P ( b ) ,  

and with w = 0 for the exponent  of  the interfering singularity. Observe that in this 
case, due to the fact that the hypergeometric  fhnctions are analytic at x = 0, the 
t\mctions describing the amplitudes are analytic at x = x o = 1. Consequently,  these 
first examples have only a critical remainder but not a true hierarchy of  confluent  
singularities. However,  they provide a first good test to show if, in a non-trivial case, 

our method  confirms the prediction w -+ 0 for the second critical exponent ,  in addi- 
tion to the correct  values for all o ther  critical parameters. 

As a first illustration, let us consider the case a = b = 1, c = 3/4, which 
presents the following asymptotic behavior: 

2 F l ( 1 , 1 ; 3 / 4 ; x )  ~ A(1 - x )  -s/4 + B, x -+ 1-, (11) 
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with A = 1 . 1 1 0 7 2 0 7 . . .  and B = 1/5. Table 1 shows all crit ical-parameter sequences, 

obtained upon using the method of  sect. 2, including only the first for ty  Taylor  

coefficients. The results in table 1 were obtained following the first criterion of  

Table 1 

Critical-parameter sequences for the hypergeometric function ~F~ (1, 1; 3/4; x). 
[Subdominant term is a critical remainder] 

N ?l~" u N A~V B N wj~[ 

9 1.248763 0.9999739 1.11601 -0 .6420 0.3006 
14 1.249638 0.9999953 1.11243 0.5629 0.1904 
19 1.249835 0.9999984 1.11155 0.3160 0.1393 
24 1.249908 0.99999932 1.111209 0.2596 0.1099 
29 1.249942 0.99999965 1.111041 0.2361 0.0907 
34 1.249961 0.99999980 1.110946 0.2236 0.0772 
39 1.249971 0.99999987 1.110887 0.2161 0.0673 

convergence (the last four coefficients L n vanish), but  they are comparable to those 

derived by using the second criterion (ext remum of  B N as a function of  w:~.). The set 
of  equations for the criticat parameters was solved by the Newton- -Raphson  method.  

As is seen, after some lower-order oscillations, all critical parameters are obtained 

through monotonous ly  converging sequences. A series of  1IN extrapolat ions from 

the results in table 1 give us the following estimations for the critical parameters:  
x o = 1 + 1 0  -7 ' 3,= 1 .25000_+5x10 - s ,  A = 1 .1107+10  -4 , A ' = 0 . 2 0 + - 0 . 0 1 ,  and 
- w = ( 1 -+ 10) x 10- s, which show an acceptable agreement with the exact results (11). 

That  is, bo th  dominating terms at x o = 1 (3, = 5/4 and w = 0) are predicted simultane- 

ously by means of  a completely unbiased approach. 
Let  us consider a second and interesting example [25] ,  

2 /71(1/4 ,3 /4;  1 /2 ;x)  = 2-U2(1  - x )  - 1 /2  11 + (1 - x)l/2} 1/2 (12a) 

which presents the asymptotic behavior (cf. eq. (10)): 

2F1(1 /4 ,3 /4 ;  1/2 ;x )  ~ A(1 - x)  -1/2 + B, (12b) 

with A = (1/2) 1/2 and B = (1/2) 3/2. Funct ion (12a) presents a true hierarchy o f c o n -  

fluent singularities about  x o = 1, but  once again the subdominant  term is a critical 
remainder (w = 0). We also tested the convergence of  the sequences to the critical 

parameters characterizing this function,  and results are displayed in table 2. The 
tabulated results were derived by applying the method of  sect. 2 and by making use o f  
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Table 2 

Critical-parameter seuqneces for the hypergeometric function ~F~ (1/4, 3/4 1/2; x). 
[Subdominant term is a critical remainder] 

t t 

N V~¢ u N A N B N w~~ 

9 0.51400 1.000223 0.6442 0.3687 0.1034 
14 0.50629 1.0000629 0.6766 0.3453 0.0668 
19 0.50374 1.0000271 0.6881 0.3397 0.0493 
24 0.50254 1.0000145 0.6938 0.3383 0.0390 
29 0.50187 1.0000088 0.6970 0.3381 0.0323 
34 0.50145 1.0000058 0.6991 0.3385 0.0276 
39 0.50117 1.0000040 0.7006 0.3390 0.0240 
44 0.50097 1.0000030 0.7016 0.3396 0.0213 
49 0.50082 1.0000022 0.7024 0.3402 0.0191 
54 0.50070 1.0000017 0.7030 0.3407 0.0174 

the convergence criterion first ment ioned.  Notice that,  as was the case with our first 

example (1 1), only the sequence converging to the subdominant  critical ampli tude B 
shows an irregular convergence. 

Standard 1/N extrapolat ion of  the sequences in table 2 leads us to the 

following est imations for the critical parameters:  x o = 0 .999998-+3x  10 .6 
T = 0.49997 -+ 5 x 10 -4 ,  A = 0.708 +- 10 -3 , M' = 0.350 -+ 0.007, and w ; (5 -+ 10) x 10-3. ̀  

As in the previous example ,  the agreement  can be considered as fairly satisfactory,  

taking into account  that  all critical parameters  have been obtained simultaneously.  

We have also studied some other  functions where an infinite number  of  

confluent  singularities is present,  but  having a clitical exponen t  w v e 0 ~\~r the leading 

subdominant  term. For instance, the family of  functions {F( t ) ( x ) }  given by 

F (/)(.x') = 2-1/2(1 - x)-1/2 11 + (1 - x)  r }1/2, (.13) 

satisfies the above requirements,  and it contains as a particular case ( t  = 1/2) the 

hypergeometr ic  function (12a). The asymptot ic  behavior of  (13) near the critical 
singularity is sinrilar to (12b): in fact, all the critical parameters  of  F ( t ) ( x )  coincide 

with those of  (12a),  except  the exponen t  characterizing the leading conf luent  singular- 
i ty,  which in this case is - w  = t - 1/2 instead of  zero. 

As a representative example ,  we display in table 3 the results obtained for the 

funct ion with t = 3/4. In this case, we expect  convergence to two leading confluent  

singularities with exponents  3' = 0.5 and - w  = 0.25. This function can be considered 

as a "hard"  example to test out  me thod  because its Taylor  coefficients do not  reach 

their asymptot ic  behavior  as quickly as in the previous examples with hypergeometr ic  

functions.  This proper ty  is clearly revealed in table 3. The results displayed have also 
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Table 3 

Critical-parameter sequences for the function (13) (t = 3/4). 
[An infinite number of confluent singularities is present; subdominant term has a 

critical exponent w = 1/4] 

9 0.50253 1.000224 0.70223 0.649 0.3229 
19 0.49817 0.9999733 0.71425 0.980 0.3893 
29 0.49898 0.9999906 0.71142 0.7220 0.3534 
39 0.49936 0.9999958 0.70996 0.6156 0.3309 
49 0.49955 0.9999977 0.70917 0.5605 0.3168 
59 0.49967 0.9999986 0.70869 0.5269 0.3072 

been obtained following the first convergence criterion discussed in sect. 2. Once 

again, after an oscillation the convergence becomes smooth ( X  > 19); this fact 

simplifies the extrapolation of  sequences. By making use of  linear and parabolic 1/N 

extrapolations,  we obtain the following estimations for the critical parameters: 
x o = 1.000002.+3 x 1 0 - 6 , 7  = 0.5003.+4 x 10 -4, A = 0 . 7 0 7 -  + 10 -3, A '= 0.36-+0.02, 

and - w  = 0.254-+0.006.  Although the exponent  w is not predicted with the same 
accuracy as was done for the previous examples (11) and (12), the whole set ofcr i t ical  
parameters cm~ be considered as acceptably described. 

The results obtained for other functions (131 with different values of t a r e  

similar in accuracy. The same holds when employing the criterion based on follow- 

ing the ex t remum of  £'~~.' as a function of  w~, ((Be{~)s).' In this latter case, we find that 

the best approximation is obtained when N = N* ,  so that (B~«,)s is an ext remum over 

N. This criterion provides results of  comparable accuracy to those displayed in 

tables 1 3, but  involving a lower number o f T a y l o r  coefficients. This alternative 

might be valuable when a large number of  coefficients is not available for the ~\lnction 

of  interest. 
The analysis performed above with these very simple, but  non-trivial functions 

suggests that the method proposed in sect. 2 would be usef'ul in predicting the whole 
set of  critical parmneters of  problems having confluent  singularities. Even though 
convergence has not  been proved analytic 'Jly,  it has been tested numerically for some 
different and representative functions. Results appear to be accurate enough to provide 
acceptable, completely unbiased estimations of  both dominant  and subdominant  

critical exponents ,  in the hext section, we apply this method to a more relevant, and 

controversial, physical model. 
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4. Analysis of the high-temperature susceptibility series 
for the spin-1/2 fcc-lattice Ising model 

Near the phase transition, the reduced magnetic susceptibility for the spin 
Ising models is supposed to behave approximately as F ( x )  in eq. (2), where 
x = tanh(J / kT)  and x o = x ( T  c) (standard notation is used [1]). In addition, Xo can 
easily be expanded in powers of x [1] and in the case of the fcc lattice, there are 
sixteen available coefficients. We can therefore apply the method previously outlined 
and obtain the critical parameters. 

In order to make clear the influence of  the corrections-to-scaling, we have 
tried several calculation schemes with fixed w' values: 

(a) w ' =  0. This choice does not take into account the contluent singular 
point, and the results so obtained can be compared with those in refs. [1,4,5, and 22] .  

(b) The conI'luent singularity is disregarded, but the Taylor expansion about 
x o of a temperature-dependent critical amplitude is supposed to originate in the 
second term ofeq .  (12) (see sect. 2). In this case, we could set w = 7 - 1. Since changes 
in w' of about 57; do not appreciably alter the results, we set w' = 1/4 (corresponding 
to ~/ -- 5/4). 

(c) A subdominant singular point with exponent A~ is considered and there- 
for w = 7 - ~~.  Since A1 = 0 .50+0.02  [7,8] (probably A 1 = 0.496 [16])according 
to the RGT, we choose w' = 3/4, which corresponds to 3' = 5/4 and 2x~ = 1/2. 

The 7' and u sequences are shown in table 4, from which we can draw the 
following conclusions: 

(a) When w' = 0, the critical exponent sequence appears to tend towards 5/4 
when N ~< 9 and then decreases as N increases. This is due to the fact that the sub- 
dominant  singularity has no distinguishable effect on the low-order Taylor coefficients, 
as argued by Nickel [17]. This sequence seems to approach 3' = 1.245, in agreement 
with Zint»Justin 's results [14,15].  However, a 1/N extrapolation yields 3' = 1.2431. 

(b) The critical exponent sequence when w ' =  1/4 is similar to the previous 
one and its limit, estimated through 1/2¢ ~ linear extrapolation, is approximately found to 
be 1.2429. Clearly, the temperature dependence of  the critical amplitude has no 
remarkable effect on the results. 

(c) When w' = 3/4, a critical exponent close to the RGT result is obtained, 
suggesting that the corrections-to-scaling are the cause of  the difference between 
HTS and RGT estimates. 

We deem that these results are more conclusive than McKenzie's [16] regard- 
ing the difference between ")'HTS and 3'RGT • However, it is still necessary to show that 
our procedure itself leads to the actual subdominant critical parameters. To this end, 
let w' take its optilnum vNue freely as discussed in sect. 2. The results in table 5, 
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Table 4 

y' and u sequences (first and second figure, respectively) for fixed w' values, 
corresponding to the spin-1/2 fcc-lattice Ising model 

N w '=  0 w '=  0.25 w '=  0.75 

1.248659 1.249185 1.251874 8 
0,10174329 0.10174528 0.10175149 

1.250644 1.251560 1.256204 9 
0.10175606 0.10175903 0.10176817 

1.248282 1.248436 1.249203 10 
0.10174274 0.10174317 0.10174472 

1.246312 1.245952 1.244176 11 
0.10173283 0.10173193 0,10172928 

1.245341 1.244791 1.242070 12 
0.10172843 0.10172719 0.10172354 

1.244996 1.244429 1.241614 
13 

0.10172701 0.10172584 0.10172241 

1.244872 1.244338 1.241679 14 
0.10172654 0.10172553 0.10172255 

1.244737 1.244224 1.241669 
15 

0.10172607 0.10172518 0.10172253 

Table 5 

Critical-parameter sequences for the dominant and subdominant singular póints in 
the spin-1/2 fcc-lattice Ising model (k l ,N  = Y'~v w~v) 

N ~~. u N - B~, )s "454 AI,N 

11 1.24450 0.10172961 0.02312 0.983743 0,5443 
12 1.24249 0.10172393 0.03774 0.991195 0.5346 
13 1.24198 0.10172271 0.04120 0.993262 0.5269 
14 1.24196 0.10172277 0.04081 0.993544 0.5200 
15 1.24188 0.10172268 0.04098 0.993892 0.5136 

obtained following the stationary point criterion, show plainly that the present method 

leads to critical exponents of  both dominant and subdominant  singular points, with 

v~ues close to those predicted by the RGT. As far as we know, there is no unbiased 

HTS calculation of  the corretion-to-scaling tenns reported previously. When applying 

the first criterion discussed in sect. 2, we have found no zeroes for the system of  four 
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equations in the region of interest, except for N = 14 and 15. In this latter case, the 
results are: u = 0.10172236, 3,' = 1.24140, ~,' - w' --- 0.4667, A' = 0.99684, and 
B' = -0 .04157 ,  which are in acceptable agreement with results in table 5. 

Since we do not know the appropriate extrapolation algorithm for our 
sequences, we try visual and analytical 1/N extrapolations (linear and parabolic) as 
well as the Wynn-Shanks algorithm [24]. On averaging the most unfavorable limit 
estimate for each sequence in table 5, with the last term in it (approximation to 
N*,  see sect. 3), we obtain 

x o = 0.101721 +- 10 .6 , "7 = 1.241 +-0.002, 

A~ = 0.49 +- 0.03, A = 0.996 +- 0.003, 

- B  = 0.042 -+ 0.002. 

Since the error bounds are very conservative, present critical parameters could probably 
be the most accurate ones, calculated by means of an unbiased analysis of the HTS. 
The critical amplitudes A and B were previously only roughly estimated, through 
biased approaches that profit from the RGT critical exponents [16]. The above x o 
value is one figure more accurate than the most accurate ones in the literature [5,6]. 
Furthennore, the agreement found between the HTS and RGT analyses seems to 
confirm the results reported for other three-dimensional lattices, obtained following 
different procedures [26]. It is expected that present results can be considerably 
improved by adding more ten-ns to the HTS. 

5. Conclusions 

A method has been developed for calculating critical parameters from power 
series expansions. It has been shown that if correction-to-scaling terms are properly 
taken into consideration, the estimated 3'HTS agrees with 3'Re;T- The originality of the 
present procedure is that the critical parameters of  both the dominant and sub- 
dominant singularities are sinmltaneously calculated. 

Our technique is suitable for dealing with many problems of actual physical 
interest [22,23].  It is only necessary to have a large enough number of Taylor co- 
efficients and to know the proper asymptotic form for the function near the singular 
point. 
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Note added in pro</ 

After submitting this work, an interesting article by P.R. Graves-Morris on 
conBuent singularities has been published (J. Phys. A21(1988)1867). Itis numerical 
results for the critical parameters are in agreement with those obtained in this article. 
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